Fast-Response Isotopic Air Monitor

(DE-AR26-98FT40365)

Thermo**Power**

Deactivation and Decommissioning Focus Area FY1999 Mid-Year Review Meeting U.S. Department of Energy Federal Energy Technology Center

May 25, 1999

Prepared by:

Keith D. Patch

Thermo Power Corporation

45 First Avenue

Waltham, MA 02454-9046

Telephone: 781/622-1022

Telefax: 781/622-1025

E-mail: kpatch@tecogen.com

Need Statements

- Critical Needs Exist for Instruments to Monitor Low Level Radioactivity in
 - Workplace Breathing Environments
 - Thermal Treatment System Off-Gas
 - Effluent and Process Water
- Must Rapidly Identify Very Low Levels of Alpha-Emitting Radionuclides

Water Alpha Monitor System

Water Monitor Concept

- Collect Radionuclides from Liquid Stream on Surface of Proprietary Film
- Analyze Film Using Large Area Solid State Detector
- Automated Instrument Automatically Provides Analysis Results
- Archive Film per Data Quality Objectives

Thermo Alpha Monitor Schematic

Rapid Analysis Results From Oak Ridge Field Test

Thermo Alpha Monitor for Liquids Field Test
Installed at DOE Oak Ridge Y-12 Bear Creek Valley

Thermo Alpha Monitor for Liquids Results Surface Water at DOE Oak Ridge (BCV SS-5)

Water Monitor Project Status

- Successful Field Test Oct. '98
- Final Report Submitted
- Negotiating Extended Duration Field Tests at
 - Oak Ridge Y-12 Plant Bear Creek Valley Site
 - LANL Radioactive Liquid Waste Treatment Facility

Future Manufacturing Plans

Issue:

 Need to Reduce Instrument Complexity and Cost to Provide Financial Payback

Approach:

Build Separate Sample and Analysis Modules

• Rationale:

 Most Sites Prefer Semi-Automatic Operation with Lower Cost Instrument

New Alpha-CAM System

Project Goals

- Meet DOE's Critical Instrumentation Need for
 - Improved Alpha Continuous Air Monitoring (CAM)
 - Using Technology that Applies Towards Alpha
 Continuous Emissions Monitoring (CEM)
- ◆ These Needs Identified by DOE's D&D, Mixed Waste, and Plutonium Focus Areas
- **◆ The CAM Instrument Should Provide:**
 - Improved Operation in Areas With High Radon Background Levels
 - Low Pressure Drop, Low Power Consumption, Low Noise Levels

Technical Approach: Air Monitor Concept

- Evolved From Water Monitoring Concept
- Collect Radionuclides from Air/Gas Stream
 - Using Electrostatic Precipitation
 - On Smooth-Surfaced Film
- Automatically Analyze Film Using Large Area Solid State Detector
- Archive Film per Data Quality Objectives
- This Technology Can Be Used For
 - Air or Flue Gas
 - Particulate Solids Preconcentration for Analysis by Conventional Methods (I.E. XRF, LIF, PSD, Etc.)

Air Monitor Description

Silicon Diode Measurement Concept

Scope of Work

- Phase I: Build and Laboratory Test a Prototype Rapid CAM System
- Phase II:
 - Build and Perform Independent Lab Test of a
 CAM at Lovelace Respiratory Research Institute
 - Build and Field Test a CAM at a D&D LSDDP
- Deploy CAMs to Meet DOE's Need

Maturity of the Technology

Demonstrated in the Laboratory

Gate/Stage Status:Stage 4 - AdvancedDevelopment

LAB DEMONSTRATION UNIT

Relevancy: Current DOE Needs

- ◆ Improved Air Alpha Monitoring: 12th of 31 D&D Needs
- **♦ 5 Primary STCG Needs:**
 - Radiological Air Monitoring Needs for Current D&D / ER
 Operations (AL-09-01-02-DD-S)
 - Improved Worker Protection Equipment (CH-DD04-99)
 - Real-Time Personnel Monitor for Alpha Contamination (OH-F002)
 - Enhanced Sensitivity Radon Meter (OH-F035)
 - Improved High Volume Air Sampler Capable of Fractionation of Airborne Particles (OH-F034)
- 9 Related STCG Needs (Flue Gas, Beryllium, Etc.)

Timeliness of Program: Large DOE Market Potential

- Many Continuous Air Monitors Needed in Coming Years Across DOE Complex
- Approximately 500 New CAMs (Minimum)
 - LANL: 250 300 New CAMs
 - WIPP: 7 10 New CAMs
 - Hanford 150 New CAMs
 - SRS 50 New CAMS

Performance Advantages Compared to Baseline Technology: Filter-Based CAMs

- First of a Kind Instrument Uses No Filters
 - Improved Isotopic Resolution
 - Provides Improved Operation in Areas With High Radon Background Levels
- ◆ High Volumetric Flow Yielding High Sensitivity
 - Low Pressure Drop
 - Low Power Consumption
 - Low Noise Levels
- **◆ Particle Size Distribution Capability**
- Integrated Calibration
- Sample Archiving System

Comparison to Other Developing Technologies

Thermo Power

- Under Development by DOE (at LANL)
 - Called FTAM and LRAM (or LRAD)
 - They Also Avoid Need For Filtering
 - Only Measure Gross Alpha
 Contamination Levels
- ◆ Neither is Suitable for CAM Use (Not Isotopic - No Radon Discrimination)

Other Performance Advantages

- Cost Reduction In Both O&M Labor and Lost Work Time
- ◆ Schedule Acceleration Better Control of Operations, Fewer False Alarms
- Reduced Public and Occupational Health Risks - Improved Radon Discrimination Yields Dose Reduction
- Reduced Environmental Impacts -Improved ALARA Operations

Project Status

Productive LRRI Kickoff Meeting

- Design Criteria Archiving of Sample is Important
- End User Input AMUG, HPIC, HPS Annual Meeting

Design Criteria Complete

- Method of Enhancing CAM Response Time
- Interest From LANL, WIPP, SRS, Hanford
- **♦** Now Building/Testing 2 Iterations of ESP-CAM

Current Design

Future Plans: Phase I

- Prototype Instrument
 - Complete Startup and Testing
 - Determine Sensitivity and Radon
 Discrimination Attributes
- **◆ Determine LSDDP Site for Phase II Field Test**
- Continue Receiving Feedback from AMUG, HPIC and HPS End Users
- ◆ Phase I Ends Sept. 30, 1999

Future Plans: Phase II

- Provide Improved Phase II CAM Instrument
 - For LRRI Benchmarking
 - For LSDDP Field Test
- Conduct LRRI Tests and Field Test
- Continue Receiving Feedback from AMUG, HPIC and HPS End Users
- **◆ Phase II to Continue for 12 Months More**

Summary

Water Alpha Monitor System

- Successfully Field Tested on Oak Ridge Reservation (ORR Y-12 Plant)
- Sensitivity 2000X Beyond EPA Limits
- Interest in Deployment at ORR and LANL

Alpha Continuous Air Monitor System

- Proof of Concept in Lab
- Much DOE Interest (LANL, WIPP, SRS, Hanford) in Initial Results
- Phase I On Schedule